
An Evaluation of
Speculative Retbleed
Jean-Claude Graf
20. July 2022

Introduction

• Retbleed is a new transient execution attack
• PF based mitigation introduces zero overhead

– Is said to be incomplete

Research Question 1
Can be build a PF free variant of Retbleed?

• In-depth mitigations seem to introduced large overheads

Research Question 2
What is the performance overhead of the in-depth mitigation?

20. July 2022 1/25

Introduction

• Retbleed is a new transient execution attack
• PF based mitigation introduces zero overhead

– Is said to be incomplete

Research Question 1
Can be build a PF free variant of Retbleed?

• In-depth mitigations seem to introduced large overheads

Research Question 2
What is the performance overhead of the in-depth mitigation?

20. July 2022 1/25

Introduction

• Retbleed is a new transient execution attack
• PF based mitigation introduces zero overhead

– Is said to be incomplete

Research Question 1
Can be build a PF free variant of Retbleed?

• In-depth mitigations seem to introduced large overheads

Research Question 2
What is the performance overhead of the in-depth mitigation?

20. July 2022 1/25

Introduction

• Retbleed is a new transient execution attack
• PF based mitigation introduces zero overhead

– Is said to be incomplete

Research Question 1
Can be build a PF free variant of Retbleed?

• In-depth mitigations seem to introduced large overheads

Research Question 2
What is the performance overhead of the in-depth mitigation?

20. July 2022 1/25

Outline

1. Background

2. Speculative Retbleed

3. Mitigation Overhead

4. Conclusion

20. July 2022 2/25

Branch Prediction Unit

• Predicts the target of a branching instruction
– If the destination takes some time to be evaluated

• Consists of multiple branch predictors

Direct/Indirect Branch Predictor
Assumes: Branches go to same location as

they went before
Implemented: BTB which is indexed by PC and

auxiliary structures like BHB

Return Instruction Predictor
Assumes: Function return to where they are

called from
Implemented: RSB

Property: Falls back to BTB on:
– RSB underflow (CoffeeLake)
– Collision with indirect branch

(Zen1/Zen2)

20. July 2022 3/25

Branch Prediction Unit

• Predicts the target of a branching instruction
– If the destination takes some time to be evaluated

• Consists of multiple branch predictors

Direct/Indirect Branch Predictor
Assumes: Branches go to same location as

they went before
Implemented: BTB which is indexed by PC and

auxiliary structures like BHB

Return Instruction Predictor
Assumes: Function return to where they are

called from
Implemented: RSB

Property: Falls back to BTB on:
– RSB underflow (CoffeeLake)
– Collision with indirect branch

(Zen1/Zen2)

20. July 2022 3/25

Branch Prediction Unit

• Predicts the target of a branching instruction
– If the destination takes some time to be evaluated

• Consists of multiple branch predictors

Direct/Indirect Branch Predictor
Assumes: Branches go to same location as

they went before
Implemented: BTB which is indexed by PC and

auxiliary structures like BHB

Return Instruction Predictor
Assumes: Function return to where they are

called from
Implemented: RSB

Property: Falls back to BTB on:
– RSB underflow (CoffeeLake)
– Collision with indirect branch

(Zen1/Zen2)

20. July 2022 3/25

Retbleed

• Is a Spectre V2 like attack targeting return instruction
• Requires two primitive:

1. RSB falls back to BTB
2. BTI works across privilege boundaries

User (Attacker)

Kernel

induced

KBR_DST

END

ret
KBR_SRC

1

2

20. July 2022 4/25

Retbleed

• Is a Spectre V2 like attack targeting return instruction
• Requires two primitive:

1. RSB falls back to BTB
2. BTI works across privilege boundaries

User (Attacker)

Kernel

induced

KBR_DST

END

ret
KBR_SRC

1

2

20. July 2022 4/25

Retbleed

• Is a Spectre V2 like attack targeting return instruction
• Requires two primitive:

1. RSB falls back to BTB
2. BTI works across privilege boundaries

User (Attacker)

Kernel

induced

KBR_DST

END

ret
KBR_SRC

1

2

20. July 2022 4/25

Retbleed

• Is a Spectre V2 like attack targeting return instruction
• Requires two primitive:

1. RSB falls back to BTB
2. BTI works across privilege boundaries

User (Attacker)

Kernel

induced

KBR_DST

END

ret
KBR_SRC

1

2

20. July 2022 4/25

Retbleed

• Is a Spectre V2 like attack targeting return instruction
• Requires two primitive:

1. RSB falls back to BTB
2. BTI works across privilege boundaries

User (Attacker)

Kernel

induced

KBR_DST

END

ret
KBR_SRC

1

2

20. July 2022 4/25

Retbleed
Why are PFs cause?

• BTI across privilege boundaries
– Indirect jump from KBR_SRC’ to KBR_DST

▶ KBR_SRC and KBR_SRC’ collide

User (Attacker)

Kernel

ENDKBR_SRC’

KBR_DST pf_handler

20. July 2022 5/25

Retbleed
Why are PFs cause?

• BTI across privilege boundaries
– Indirect jump from KBR_SRC’ to KBR_DST

▶ KBR_SRC and KBR_SRC’ collide

User (Attacker)

Kernel

ENDKBR_SRC’

KBR_DST pf_handler

20. July 2022 5/25

Outline

1. Background

2. Speculative Retbleed

3. Mitigation Overhead

4. Conclusion

20. July 2022 6/25

Goal
Can be build a PF free variant of Retbleed?

20. July 2022 7/25

The Idea

⇒ Speculative BTI

Pros:
• No PF is raised
• BTI still works

Cons:
• Does it actually work?

User (Attacker)

Kernel

ENDKBR_SRC’

KBR_DST

jmp *

20. July 2022 8/25

The Idea

⇒ Speculative BTI

Pros:
• No PF is raised
• BTI still works

Cons:
• Does it actually work?

User (Attacker)

Kernel

ENDKBR_SRC’

KBR_DST

jmp *

20. July 2022 8/25

The Idea

⇒ Speculative BTI

Pros:
• No PF is raised
• BTI still works

Cons:
• Does it actually work?

User (Attacker)

Kernel

ENDKBR_SRC’

KBR_DST

jmp *

20. July 2022 8/25

The Idea

⇒ Speculative BTI

Pros:
• No PF is raised
• BTI still works

Cons:
• Does it actually work?

User (Attacker)

Kernel

ENDKBR_SRC’

KBR_DST

jmp *

20. July 2022 8/25

Speculative Ret-BTI
Ret-BTI PoC in Detail

• Verify that spec BTI works in same privilege domain
• Ret-BTI exploits the first required primitive

Training Phase:

TRAIN_PATH BR1 TRAIN
ret retret

ret

END

Speculation Phase:

retret

ret

TRAIN_PATH BR1 TRAIN

SPEC ENDret

20. July 2022 9/25

Speculative Ret-BTI
Ret-BTI PoC in Detail

• Verify that spec BTI works in same privilege domain
• Ret-BTI exploits the first required primitive

Training Phase:

TRAIN_PATH BR1 TRAIN
ret retret

ret

END

Speculation Phase:

retret

ret

TRAIN_PATH BR1 TRAIN

SPEC ENDret

20. July 2022 9/25

Speculative Ret-BTI
Ret-BTI PoC in Detail

• Verify that spec BTI works in same privilege domain
• Ret-BTI exploits the first required primitive

Training Phase:

TRAIN_PATH BR1 TRAIN
ret retret

ret

END

Speculation Phase:

retret

ret

TRAIN_PATH BR1 TRAIN

SPEC ENDret

20. July 2022 9/25

Speculative Ret-BTI

• Use SpectreRSB to cause speculation
• History needs to be equivalent

Training Phase:

BR1

ROGUE

TRAIN

END

ret

call

ret

retret

ret

TRAIN_PATH

Speculation Phase:
END

call ret

TRAIN_PATH BR1

ROGUE

TRAIN
ret retret

ret

20. July 2022 10/25

Speculative Ret-BTI

• Use SpectreRSB to cause speculation
• History needs to be equivalent

Training Phase:

BR1

ROGUE

TRAIN

END

ret

call

ret

retret

ret

TRAIN_PATH

Speculation Phase:
END

call ret

TRAIN_PATH BR1

ROGUE

TRAIN
ret retret

ret

20. July 2022 10/25

Speculative Ret-BTI

• Use SpectreRSB to cause speculation
• History needs to be equivalent

Training Phase:

BR1

ROGUE

TRAIN

END

ret

call

ret

retret

ret

TRAIN_PATH

Speculation Phase:
END

call ret

TRAIN_PATH BR1

ROGUE

TRAIN
ret retret

ret

20. July 2022 10/25

Speculative Ret-BTI
Results

• Speculative BTI works in same privilege domains
– For Intel CoffeeLake and AMD Zen1, Zen1+ and Zen2

20. July 2022 11/25

Speculative CP-BTI
CP-BTI PoC in Detail

• Verify that spec BTI works across privilege boundaries
• CP-BTI exploits the second required primitive

Training Phase:

KBR_SRC’ ret pf
ret

ret

END

KBR_DST

User
Kernel

pf_handler

Speculation Phase: ret

ret

ret

END
User
Kernel KBR_SRC

KBR_DST

20. July 2022 12/25

Speculative CP-BTI
CP-BTI PoC in Detail

• Verify that spec BTI works across privilege boundaries
• CP-BTI exploits the second required primitive

Training Phase:

KBR_SRC’ ret pf
ret

ret

END

KBR_DST

User
Kernel

pf_handler

Speculation Phase: ret

ret

ret

END
User
Kernel KBR_SRC

KBR_DST

20. July 2022 12/25

Speculative CP-BTI
CP-BTI PoC in Detail

• Verify that spec BTI works across privilege boundaries
• CP-BTI exploits the second required primitive

Training Phase:

KBR_SRC’ ret pf
ret

ret

END

KBR_DST

User
Kernel

pf_handler

Speculation Phase: ret

ret

ret

END
User
Kernel KBR_SRC

KBR_DST

20. July 2022 12/25

Speculative CP-BTI

• Again, use SpectreRSB to cause speculation
• History needs to be equivalent

Training Phase:

ret
ret

ret END

User
Kernel

KBR_DST

KBR_SRC’

ROGUE

ret

call
ret

Speculation Phase:

ret

ret

END
User
Kernel

ret
KBR_SRC

KBR_DST

FAKE_ROGUE

call ret

ret

20. July 2022 13/25

Speculative CP-BTI

• Again, use SpectreRSB to cause speculation
• History needs to be equivalent

Training Phase:

ret
ret

ret END

User
Kernel

KBR_DST

KBR_SRC’

ROGUE

ret

call
ret

Speculation Phase:

ret

ret

END
User
Kernel

ret
KBR_SRC

KBR_DST

FAKE_ROGUE

call ret

ret

20. July 2022 13/25

Speculative CP-BTI

• Again, use SpectreRSB to cause speculation
• History needs to be equivalent

Training Phase:

ret
ret

ret END

User
Kernel

KBR_DST

KBR_SRC’

ROGUE

ret

call
ret

Speculation Phase:

ret

ret

END
User
Kernel

ret
KBR_SRC

KBR_DST

FAKE_ROGUE

call ret

ret

20. July 2022 13/25

Speculative CP-BTI
Results

• Speculative BTI works across privilege boundaries
– Shown only for Intel CoffeLake

20. July 2022 14/25

Summary

⇒ It is possible to create a version of Retbleed which does not rely on PFs!

20. July 2022 15/25

Outline

1. Background

2. Speculative Retbleed

3. Mitigation Overhead

4. Conclusion

20. July 2022 16/25

Goal
What is the performance overhead of the in-depth mitigation?

20. July 2022 17/25

In-Depth Mitigation Overview

Microarch. Single Overhead in % Multiple Overhead in %

Coffee Lake 26.79 22.09

Zen1 13.65 5.12
Zen1(NoSmt) 12.83 36.71

Zen2 15.49 13.13

20. July 2022 18/25

Outline

1. Background

2. Speculative Retbleed

3. Mitigation Overhead

4. Conclusion

20. July 2022 19/25

Conclusion

⇒ Spec BTI works in same and cross privilege domain
⇒ PF free Retbleed is possible
⇒ In-depth mitigations introduce potentially huge overheads

20. July 2022 20/25

Conclusion

⇒ Spec BTI works in same and cross privilege domain
⇒ PF free Retbleed is possible
⇒ In-depth mitigations introduce potentially huge overheads

20. July 2022 20/25

Conclusion

⇒ Spec BTI works in same and cross privilege domain
⇒ PF free Retbleed is possible
⇒ In-depth mitigations introduce potentially huge overheads

20. July 2022 20/25

Rogue Function
asm(

".align 0x80000\n\t"
"rogue_spec_dst:\n\t"

"callq rogue_gadg_dst\n\t"
// Training: execute following code speculatively
// Misspredict: execute following code architectually
"jmp *%r9\n\t"

"rogue_gadg_dst:\n\t"
// If %rsi = 1: add 8 to rsp => cause speculation
// If %rsi = 0: do othing
"lfence\n\t"
"movq %rsp, %rdx\n\t"
"addq $0x8, %rdx\n\t"
"cmp $1, %rsi\n\t"
"cmoveq %rdx, %rsp\n\t"
"clflush (%rsp)\n\t"
"ret\n\t"

"rogue_spec_dst_end:\n\t"
);

20. July 2022 22/25

Speculative Ret-BTI
Results

• Speculative BTI works in same privilege domains
– For Intel CoffeeLake and AMD Zen1, Zen1+ and Zen2

• Success rate in %

CoffeeLake Zen1 Zen2

Ret-BTI 56.00 98.85 99.31
Spec Ret-BTI 77.40 ? ?

• Speculative Ret-BTI is less stable
– Standard Derivation is up to 10 times as large

20. July 2022 23/25

Speculative CP-BTI
Results

• Speculative BTI works across privilege boundaries
– Shown only for Intel CoffeLake

• Success rate in %

CP-BTI Spec CP-BTI

CoffeeLake 27.16 89.93

• Mean standard derivation of:
– CP-BTI: 0.13

▶ Stable for N

– Spec CP-BTI: 0.26
▶ Decreases for increasing N

20. July 2022 24/25

In-Depth Mitigation Overview

Single Multiple
Microarch. Norm. Index Score Overhead in % Norm. Index Score Overhead in %

Coffee Lake 0.78869 26.79 0.81910 22.09

Zen1 0.87993 13.65 0.95128 5.12
Zen1(NoSmt) 0.88631 12.83 0.73145 36.71

Zen2 0.86586 15.49 0.88393 13.13

• Benchmark Suit: Byte-UnixBench
• Geometric Mean of the median of 10 invocations of each workload
• Overhead calculated as unpatched

patched − 1

20. July 2022 25/25

	Introduction
	Background
	Speculative Retbleed
	Mitigation Overhead
	Conclusion

